Making an API

What is an API?

e An API, which stands for "Application Programming Interface," is a set of rules and
protocols that allow different software applications to communicate and exchange
data with each other

e Web APIs are typically built using HTTP

Building an API

e There are many tools to do this; for this course, we will use FastAPI

e "FastAPl is a modern, fast (high-performance), web framework for building APIs
with Python based on standard Python type hints."

e Decision points for me:
o Built-in pydantic integration for validation and serialization.

o OpenAPl integration and automatic interactive documentation.

FastAPIl hello world

e create a file server.py

#server.py
from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def root():
return {"message": "Hello World"}

Running the server

e Open a terminal in the directory containing your main.py and run the command
below

e Then open the URL in your browser.

fastapi dev server.py

Making a request to your server

e create another python file client.py

e Make a request to your API

client.py

import requests
import json

url = "http://127.0.0.1:8000"

first steps

r = requests.get(f'{url}/")
print(r.status_code)
print(r.text)

Dev mode

e Running the server in dev mode means that (in theory) it will automatically restart
when you make changes to server.py.

e However, I've found that this doesn't work as expected.

e Make changes to the server and run your client - you'll find that the first run won't
reflect the changes.

e |f you click your mouse in the terminal window with your server after making
changes, it will advance the restart process.

Server and client side

e |n one terminal, you are running your server.
* |n a separate terminal, you are running your client.

e |f you get a 500 status code (server error) on the client side, that means that your
server crashed and you have to debug on the server side.

ltem model

e For the next demo, we need a simple model.

e You can just stick this at the top of server.py (after the imports)

server.py
from pydantic import BaseModel
class Item(BaseModel):
name:str
category:str

POST requests

* now let's make a POST items endpoint
e this doesn't actually do anything
e we are doing some printing to see what's going on

e no explicit return will return a 200 with null text.

@app.post('/items"')

async def create item(item:Item):
print(type(item))
print(item)

POST requests

e Now make a POST request from the client:

request _body = {'name':'stapler’,
'category':'office'}

r = requests.post(f'{url}/items’, json=request body)

print(r.status_code)

print(r.text)

Request validation

e What type is request_body on the client side?
e What type is item on the server side?

e What happens if:
o no body provided?

o missing field?

Key point

* |n our unit_tests, we were manually converting to pydantic objects before passing
them to UserManager.

e But we never want to trust our users to pass validated input.
e FastAPI will automatically validate requests against your pydantic models

e FastAPI also handles parameter parsing -
o extracting data from HTTP URI path, query, and body.

POST responses

e |f you need to return another status code

e e.g.409 for resource conflict

from fastapi.responses import JSONResponse
H---
e.g. conflict
return JSONResponse(status code=409,
content="dulicate key")

