Flask 1: listing users / viewing user

Organizing your projects

e See 'note2-organization.md'

Hello world

* name it app.py
e flask run --debug

from flask import Flask
app = Flask(__name_)

@app.route("/")
def hello world():
return "<p>Hello, World!</p>"

Rendering templates

e |'m using app.get to specify the GET method
e make sure that your html files are in a 'templates/' subdirectory

e navigation will go: home > accounts > users

@app.get("/")
def index():

return render_template('index.html')

@app.get("/accounts/")
def accounts():
return render_template('accounts.html')

Links

e use url_for to dynamically generate links.
e url for refers to the function name, not the route.

e this way, things won't break if you change routes.

Account management

Dynamic content

e the user data will come from the API

e this can happen now, but it doesn't need to

@app.get("/users/")
def list users():

TODO: get user data
users = []

return render_template('list users.html', users=users)

Getting data from your API

e define your service / API url

e |oad your data just like you did in your api tests

e GET users returns a UserCollection as a JSON string
e when you use json.loads, it converts to a dict

e finally, we can get the user list

res = requests.get(f'{url}/users/")
users = json.loads(res.text).get('users"')

Mocking

e For development, it is sometimes helpful to mock data.
e This is especially helpful if you are developing the App and API simultaneously.

e As long as you agree on the API specification, the pieces should fit together later

Creating some data using Faker

e create one mock user

from user_models import *
from faker import Faker
fake = Faker()

def get _user():
user = UserOut(
_id=fake.uuid4(),
username=fake.user_name(),
password=fake.password()

)

return user

Creating many

e Note that this would have been helpful when we were testing our DB and API.

def get users(num_users=10):
users = []
for _ in range(num_users):
users.append(get _user())
return users

Populating your user listing

e use ajinja for-loop to list the users

e note the syntax
o {% %} for commands

o {{ }} for evaluating variables

{% for user in users %}
<1i> {{ user.username }} </1i>
{% endfor %}

