
Data management
Validating user_create

Why validate?
create_user method takes a dict

what could go wrong?

class UserManager:
 # [..]
 def create_user(self, user_dict:dict) -> str | None:
 pass

Validating input
We want to make sure that only certain data makes it into the DB, e.g.:

right names for keys

right data types for values

all required fields are included

UserIn model
Pydantic can be used for validation

by default, extra fields will be dropped on conversion
types are checked

user_models.py
class UserIn(BaseModel):
 username:str
 password:str

Validating DB input
convert to a UserIn and back to a dict to validate

create a string _id before insertion

validate and insert
data1 = {'username': 'joe', 'password': 'schmoe'}
u1 = UserIn(**data1)
#--------------------
u1d = u1.model_dump()
u1d['_id'] = str(ObjectId())
x = mycol.insert_one(u1d)

Validating results
We also want to validate results.
This includes

status results from create_user

data from read_user

Operation results
CreateUserResult inherits status and message from OperationResult

message and inserted_id are both optional
message should have a value if status is 0 (fail)

inserted_id should have a value if status is 1 (success)

class OperationResult(BaseModel):
 status: int
 message: Optional[str]=None

class CreateUserResult(OperationResult):
 inserted_id: Optional[str] = None

Implementing create_user
 def create_user(self, user:UserIn) -> CreateUserResult:
 '''create user and return result'''

 # dump user to dict
 # use a try-except block to return the appropriate result

Testing
The tests will be almost the same, except for:

creating UserIn to pass to your create_user method
dealing with CreateUserResult rather than a dict

class TestUserManager(unittest.TestCase):
 # [..]
 def test_basic(self):
 ''' Initialize, create user, read user'''

Activity
Complete implementation and testing for create and read.

Do the same for update and delete.

