
Flask 1: listing users / viewing user

Organizing your projects
See 'note2-organization.md'

Hello world
name it app.py

flask run --debug

from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello_world():
 return "<p>Hello, World!</p>"

Rendering templates
I'm using app.get to specify the GET method

make sure that your html files are in a 'templates/' subdirectory
navigation will go: home > accounts > users

@app.get("/")
def index():
 return render_template('index.html')

@app.get("/accounts/")
def accounts():
 return render_template('accounts.html')

Links
use url_for to dynamically generate links.

url_for refers to the function name, not the route.
this way, things won't break if you change routes.

Account management

Dynamic content
the user data will come from the API

this can happen now, but it doesn't need to

@app.get("/users/")
def list_users():

 # TODO: get user data
 users = []

 return render_template('list_users.html', users=users)

Getting data from your API
define your service / API url

load your data just like you did in your api tests

GET users returns a UserCollection as a JSON string
when you use json.loads, it converts to a dict

finally, we can get the user list

res = requests.get(f'{url}/users/')
users = json.loads(res.text).get('users')

Mocking
For development, it is sometimes helpful to mock data.

This is especially helpful if you are developing the App and API simultaneously.

As long as you agree on the API specification, the pieces should fit together later

Creating some data using Faker
create one mock user

from user_models import *
from faker import Faker
fake = Faker()

def get_user():
 user = UserOut(
 _id=fake.uuid4(),
 username=fake.user_name(),
 password=fake.password()
)
 return user

Creating many
Note that this would have been helpful when we were testing our DB and API.

def get_users(num_users=10):
 users = []
 for _ in range(num_users):
 users.append(get_user())
 return users

Populating your user listing
use a jinja for-loop to list the users

note the syntax
{% %} for commands

{{ }} for evaluating variables

{% for user in users %}
 {{ user.username }}
{% endfor %}

