
Making an API

What is an API?
An API, which stands for "Application Programming Interface," is a set of rules and
protocols that allow different software applications to communicate and exchange
data with each other

Web APIs are typically built using HTTP

Building an API
There are many tools to do this; for this course, we will use FastAPI
"FastAPI is a modern, fast (high-performance), web framework for building APIs
with Python based on standard Python type hints."

Decision points for me:
Built-in pydantic integration for validation and serialization.

OpenAPI integration and automatic interactive documentation.

FastAPI hello world
create a file server.py

#server.py
from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def root():
 return {"message": "Hello World"}

Running the server
Open a terminal in the directory containing your main.py and run the command
below
Then open the URL in your browser.
fastapi dev server.py

Making a request to your server
create another python file client.py

Make a request to your API

client.py

import requests
import json

url = 'http://127.0.0.1:8000'

first steps
r = requests.get(f'{url}/')
print(r.status_code)
print(r.text)

Dev mode
Running the server in dev mode means that (in theory) it will automatically restart
when you make changes to server.py.

However, I've found that this doesn't work as expected.

Make changes to the server and run your client - you'll find that the first run won't
reflect the changes.

If you click your mouse in the terminal window with your server after making
changes, it will advance the restart process.

Server and client side
In one terminal, you are running your server.
In a separate terminal, you are running your client.

If you get a 500 status code (server error) on the client side, that means that your
server crashed and you have to debug on the server side.

Item model
For the next demo, we need a simple model.

You can just stick this at the top of server.py (after the imports)

server.py
from pydantic import BaseModel
class Item(BaseModel):
 name:str
 category:str

POST requests
now let's make a POST items endpoint

this doesn't actually do anything

we are doing some printing to see what's going on
no explicit return will return a 200 with null text.

@app.post('/items')
async def create_item(item:Item):
 print(type(item))
 print(item)

POST requests
Now make a POST request from the client:

request_body = {'name':'stapler',
 'category':'office'}
r = requests.post(f'{url}/items',json=request_body)
print(r.status_code)
print(r.text)

Request validation
What type is request_body on the client side?

What type is item on the server side?

What happens if:
no body provided?

missing field?

Key point
In our unit_tests, we were manually converting to pydantic objects before passing
them to UserManager.

But we never want to trust our users to pass validated input.

FastAPI will automatically validate requests against your pydantic models
FastAPI also handles parameter parsing -

extracting data from HTTP URI path, query, and body.

POST responses
If you need to return another status code

e.g. 409 for resource conflict

from fastapi.responses import JSONResponse
#---
 # e.g. conflict
 return JSONResponse(status_code=409,
 content="dulicate key")

