Data management ctd.

Validating read_user(s)

UserOut model

e will include the auto-generated _id

* |n most cases, we will want to exclude password from UserOut

class UserOut(BaseModel):
_id:str
password: str
username:str

Validating DB output

e What do you notice about the output?

read and validate

uid = x.inserted id

ud = mycol.find one({' _id':uid})
u = UserOut(**ud)

print(u)

Using an alias

e recall that mongo requires a unique _id field

e however, pydantic ignores fields with a leading underscore

e one way to address this is to use an alias

user_models.py
from pydantic import Field
#[..]
class UserOut(BaseModel):
id: str = Field(alias="_id")
password: str
username:str

read_users: validating queries

e We should validate queries before read_users

e For now, we just support query by username

in user_models.py
class UserQuery(BaseModel):
username: str

read_users: validating collections

e When we get the results back, we need to validate

e We can validate all at once by using a UserCollection model

class UserCollection(BaseModel):
users: list[UseroOut]

reading users with query

e We still want to support default read all users

create some users before this

g = UserQuery(username="'joe")
docs = mycol.find(qg.model dump())
uc = UserCollection(users=docs)

Updating UserManager

class UserManager:
#[..]
def read user(self, user _id:str) -> UserOut | None:
"''read user and return''’
def read users(self,query:UserQuery=None) -> UserCollection:
""" read users by query, or read all users, and return

Testing

e The tests will be almost the same, except for:
o creating appropriate objects for method calls

o dealing with returned objects

class TestUserManager(unittest.TestCase):

#[..]
def test basic(self):
"' reset, create user, read user''’

def test reads(self):
"' reset, create users, read users'''

Activity

e Complete implementation and testing for create and read.

e Do the same for update and delete.

