Data management

Validating user_create

Why validate?

e create user method takes a dict

e what could go wrong?

class UserManager:

#[..]
def create_user(self, user dict:dict) -> str | None:
pass

Validating input

We want to make sure that only certain data makes it into the DB, e.q.:

e right names for keys
e right data types for values

e all required fields are included

Userln model

e Pydantic can be used for validation
o by default, extra fields will be dropped on conversion

o types are checked

user_models.py

class UserIn(BaseModel):
username:str
password:str

Validating DB input

e convert to a Userln and back to a dict to validate

e create a string _id before insertion

validate and insert

datal = {'username': 'joe', 'password': 'schmoe'}
ul = UserIn(**datal)
¢ S

uld = ul.model dump()
uld[' id'] = str(ObjectId())
X = mycol.insert _one(uld)

Validating results

e \We also want to validate results.

e This includes
o status results from create user

o data from read_user

Operation results

e CreateUserResult inherits status and message from OperationResult

e message and inserted_id are both optional
o message should have a value if status is 0 (fail)

o inserted_id should have a value if status is 1 (success)

class OperationResult(BaseModel):
status: int
message: Optional[str]=None

class CreateUserResult(OperationResult):
inserted _id: Optional[str] = None

Implementing create_user

def create user(self, user:UserIn) -> CreateUserResult:
"''create user and return result''’

dump user to dict

use a try-except block to return the appropriate result

Testing

e The tests will be almost the same, except for:
o creating Userln to pass to your create_user method

o dealing with CreateUserResult rather than a dict

class TestUserManager(unittest.TestCase):

#[..]
def test basic(self):
"'' Initialize, create user, read user'''

Activity

e Complete implementation and testing for create and read.

e Do the same for update and delete.

